588 research outputs found

    A General Procedure for the Regioselective Synthesis of Aryl Thioethers and Aryl Selenides Through C–H Activation of Arenes

    Get PDF
    A general procedure for the synthesis of aryl thioethers and aryl selenides in one-pot through sequential iridium-catalyzed C–H borylation and copper-promoted C–S and C–Se bond formation is described. Functional groups including chloro, nitro, fluoro, trifluoromethyl, and nitrogen-containing heterocycles were all tolerated under the reaction conditions. Importantly, not only aryl thiols and selenides but also their alkyl analogs were suitable coupling partners, and the products were obtained in good yields with high meta regioselectivity

    Multiple Events of Allopolyploidy in the Evolution of the Racemose Lineages in Prunus (Rosaceae) Based on Integrated Evidence from Nuclear and Plastid Data.

    Get PDF
    Prunus is an economically important genus well-known for cherries, plums, almonds, and peaches. The genus can be divided into three major groups based on inflorescence structure and ploidy levels: (1) the diploid solitary-flower group (subg. Prunus, Amygdalus and Emplectocladus); (2) the diploid corymbose group (subg. Cerasus); and (3) the polyploid racemose group (subg. Padus, subg. Laurocerasus, and the Maddenia group). The plastid phylogeny suggests three major clades within Prunus: Prunus-Amygdalus-Emplectocladus, Cerasus, and Laurocerasus-Padus-Maddenia, while nuclear ITS trees resolve Laurocerasus-Padus-Maddenia as a paraphyletic group. In this study, we employed sequences of the nuclear loci At103, ITS and s6pdh to explore the origins and evolution of the racemose group. Two copies of the At103 gene were identified in Prunus. One copy is found in Prunus species with solitary and corymbose inflorescences as well as those with racemose inflorescences, while the second copy (II) is present only in taxa with racemose inflorescences. The copy I sequences suggest that all racemose species form a paraphyletic group composed of four clades, each of which is definable by morphology and geography. The tree from the combined At103 and ITS sequences and the tree based on the single gene s6pdh had similar general topologies to the tree based on the copy I sequences of At103, with the combined At103-ITS tree showing stronger support in most clades. The nuclear At103, ITS and s6pdh data in conjunction with the plastid data are consistent with the hypothesis that multiple independent allopolyploidy events contributed to the origins of the racemose group. A widespread species or lineage may have served as the maternal parent for multiple hybridizations involving several paternal lineages. This hypothesis of the complex evolutionary history of the racemose group in Prunus reflects a major step forward in our understanding of diversification of the genus and has important implications for the interpretation of its phylogeny, evolution, and classification

    Blue shifting of the A exciton peak in folded monolayer 1H-MoS2

    Full text link
    The large family of layered transition-metal dichalcogenides is widely believed to constitute a second family of two-dimensional (2D) semiconducting materials that can be used to create novel devices that complement those based on graphene. In many cases these materials have shown a transition from an indirect bandgap in the bulk to a direct bandgap in monolayer systems. In this work we experimentally show that folding a 1H molybdenum disulphide (MoS2) layer results in a turbostratic stack with enhanced photoluminescence quantum yield and a significant shift to the blue by 90 meV. This is in contrast to the expected 2H-MoS2 band structure characteristics, which include an indirect gap and quenched photoluminescence. We present a theoretical explanation to the origin of this behavior in terms of exciton screening.Comment: 16 pages, 8 figure

    Ultra-low reflectance, high absorption microcrystalline silicon nanostalagmite

    Get PDF
    In this work, microcrystalline silicon nanostalagmite [ÎĽc-SiNS] arrays have been successfully fabricated on glass by catalytic etching process through a template. The template, polystyrene [PS] nanospheres, with diameter and density of 30 to approximately 50 nm and 1010/cm2, respectively, was obtained by a modified nanophase separation of PS-containing block copolymer. The length of ÎĽc-SiNS could be controlled by the duration of etching time. The ÎĽc-SiNS exhibits ultra-low reflection approximately 0.3% and absorption around 99% over 300 to 800 nm in wavelength. Reflection is also suppressed for a wide range of angles of incidence in wide range of wavelength. This indicates the extensive light-trapping effect by the ÎĽc-SiNS and could possibly harvest a large amount of solar energy at infrared regime
    • …
    corecore